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Abstract— Model predictive control (MPC) is powerful to
control systems with non-linear dynamics and constraints, but
its computational demands impose limitations on the dynamics
model used for planning. Instead of using a single complex
model along the MPC horizon, model hierarchy predictive
control (MHPC) reduces solve times by planning over a
sequence of models of varying complexity within a single
horizon. Choosing this model sequence can become intractable
when considering all possible combinations of reduced order
models and prediction horizons. This paper proposes a frame-
work to systematically optimize a model schedule for MHPC.
We leverage trajectory optimization (TO) to approximate the
accumulated cost of the robot in closed-loop. We trade off
performance and solve times by minimizing the dimensionality
of the MHPC problem along the horizon while keeping the
approximate closed-loop cost near optimal. The framework is
validated in simulation with a planar humanoid robot as a
proof of concept. We find that the approximated closed-loop cost
matches the simulated one for most of the model schedules, and
show that the proposed approach finds optimal model schedules
with total horizons that vary between 1.1 and 1.6 walking steps
and that transfer directly to simulation.

I. INTRODUCTION

A. Related Work

Full-body models can exploit the full dynamic capabilities
of the robot [1], but it remains challenging to optimize full-
body trajectories in real time for high-dimensional systems
like legged robots. Due to the complexity of these systems,
roboticists have adopted reduced order models (ROMs) to
simplify analysis and control.

For instance, the linear inverted pendulum (LIP) [2] and
the spring-loaded inverted pendulum (SLIP) [3] are common
ROMs for humanoid locomotion, and have inspired many
extensions [4]–[6]. The LIP, the SLIP and the single rigid
body (SRB) have been used in MPC to rapidly optimize
trajectories, which are typically tracked by a whole-body
controller. Despite its utility, this approach can limit per-
formance, as it forces the robot to behave like a ROM that
cannot account for whole-body constraints [7].

To find less restrictive ROMs, Chen and Posa [7] proposed
a bilevel optimization to synthesize ROMs that minimize the
cost incurred by a full-body model. For a chosen ROM pa-
rameterization, they find parameters that are least restrictive
for a distribution of tasks. The ROM and horizon, however,
still need to be chosen by the engineer.
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Fig. 1. Body position from full-body (T O) compared to an approximate
closed-loop trajectory using (MHPC). The goal of this paper is to
optimize the horizons Nfull and NSRB by minimizing the dimensionality
of (MHPC) while keeping the closed-loop cost near optimal.

A recent strategy that combines the advantages of ROMs
and full-body models is model hierarchy predictive control
(MHPC), which consists of planning over a hierarchy of
models across the horizon [8]–[10]. Both the performance
and solve times of the close-loop controller are affected
by the complexity of the models used and their prediction
horizon. In previous works, a balance between the number
of failures [8], [10] and the average solve time was used to
judge the performance of various model schedules. Wang et
al. [9] used the closed-loop accumulated cost instead of the
number of failures. These criteria require running multiple
MHPC configurations in simulation to select the one that best
trades off solve time and model complexity. This approach,
however, becomes intractable when considering the plethora
of ROMs available and all possible combinations accross the
horizon, each having different equations of motion.



B. Contribution

The main contribution of this paper is a systematic
framework to optimize the model schedule for MHPC. We
leverage trajectory optimization to trade off performance and
solve time by minimizing the dimensionality of the MHPC
controller while keeping the estimated closed-loop cost of
the robot near optimal. The approach only requires to derive
the equations of motion of the full model, and appropriate
constraints to represent various ROMs. We test the approach
for a simple walking task, where we solve for the optimal
horizons of a full-body model and a SRB model. To validate
the approach, we test all possible MHPC configurations
in simulation. We show that our method produces a low-
resolution approximation of the closed-loop dynamics that
enables the use of TO to estimate the closed-loop perfor-
mance of MHPC. Finally, our TO-based framework solves
for model schedules that perform close to a full-model MPC
while keeping the solve times low.

II. BACKGROUND

A. Trajectory Optimization and Model Predictive Control

Trajectory optimization solves for a trajectory of states
and control inputs that minimize the cost along a horizon
of N stages while respecting systems dynamics f(·), path
constraints g(·) and terminal constraints gN (·):

V ∗(x1) = min
X

N−1∑
k=1

c(xk,uk) + cN (xN ) (T O)

subject to

xk+1 = f(xk,uk) ∀ k ∈ {1, ..., N − 1}
g(xk,uk) ≤ 0 ∀ k ∈ {1, ..., N − 1}
gN (xN ) ≤ 0,

where V ∗(·) is the optimal accumulated cost, xk and
uk are respectively the system state and input at stage
k, c(·) is the stage cost, cN (·) is the terminal cost and
X = {{x,u}N−1

k=1 ,xN} describes the set of all decision
variables: the trajectories of states and inputs.

B. Model Hierarchy Predictive Control

Instead of planning with a single model, MHPC consists of
planning over a hierarchy of models within a single TO, with
hybrid dynamics that switch between reduced order models
according to a model schedule. In this paper, we define
S =

{
{f̂ , ĝ}N̂−1

k=1 , ĝN̂
}

as a model schedule composed
of different ROM dynamics and constraints at each stage.
MHPC takes the following form:

V̂ S(x̂1) = min
X̂

N̂−1∑
k=1

ĉk(x̂k, ûk) + ĉN̂ (x̂N̂ ) (MHPC)

subject to

x̂k+1 = f̂k(x̂k, ûk) ∀ k ∈ {1, ..., N̂ − 1}
ĝk(x̂k, ûk) ≤ 0 ∀ k ∈ {1, ..., N̂ − 1}
ĝN (x̂N ) ≤ 0,

where the symbol (̂·) denotes variables and functions that
relate to ROMs, X̂ =

{
{x̂, û}N−1

k=1 , x̂N

}
is the set of

decision variables. Note the dependency of the dynamics and
constraints on stage k. The cost accumulated by the robot
under the MHPC policy is denoted as V S(x1), where the
absence of (̂·), emphasizes that the cost is incurred by the
actual robot when closing the loop.

III. PROBLEM STATEMENT

The goal of this paper is to propose a systematic approach
to find a model schedule S that minimizes solve time while
bounding the closed-loop performance. As a proxy for solve
time, we minimize the dimensionality in (MHPC). Thus,
we consider the model schedule S to be optimal when

S = S∗ =argmin
S

|X̂ | (MS)

subject to

V S(x1)− V ∗(x1)

V ∗(x1)
≤ ϵ,

where the cost penalizes the number of decision variables
(i.e. the dimensionality of (MHPC)). The term in the
inequality represents the relative cost error (RCE), which
must be within some chosen bound ϵ.

IV. IMPLEMENTATION

The problem (MS) is a bilevel optimization, with
(MHPC) in its inner loop. Solving it requires computing:

1) the optimal cost V ∗(x1) from (T O) for the full robot
2) the solution to (MHPC) and induced policy for

multiple S
3) the closed-loop cost V S(x1) for multiple S.

In this work, we use trajectory optimization to approximate
these three terms.

A. Full-Body Trajectory Optimization

To estimate V ∗(x1), we formulate TO with a direct
transcription method with full-body dynamics.

B. Parameterized MHPC formulation

The dynamics and state/input constraints in the MHPC
need to be changed depending on the model used. To achieve
this, the model schedule S is defined as the set of binary
parameters

S =
{
sm,k ∈ {0, 1}|

∑
m∈M

sm,k = 1 ∀ k
}
, (1)

where the constraint in (1) ensures that only one model is
active at each stage k. Each element sm,k is used to activate
the dynamics and constraints of a ROM m ∈ M at stage k,
where M is a finite set of candidate models.

Instead of deriving the equations of motion for each
possible reduced-order model, the full-body dynamics are
used along the entire horizon and are constrained to enforce
the behavior of various reduced order models at each stage.
In practice, the big-M formulation is used to activate and
deactivate the constraints.



C. Closed-loop Cost Approximation

To approximate the closed-loop cost V S in (MHPC),
the full-body model is used at the first and second time-
steps. This restriction allows to directly treat the first timestep
of (MHPC) as a simulation step. As a result, the solution
to (MHPC) approximates the closed-loop dynamics of the
robot under the MHPC policy using TO:

{uk,xk+1} ⊂ argmin
X̂

V̂ S(xk). (2)

With (2), a full-body trajectory over a horizon of N timesteps
is generated (as in Fig. 1), for which the accumulated cost
V S(x1) is evaluated. Hence, the inequality in (MHPC) can
be evaluated for every S and we can find S∗ that minimizes
the dimensionality.

V. RESULTS

A. Experimental Setup

We implement our approach for a fixed walking gait. The
order of each model is fixed (full-body model first, followed
by the SRB and the void models), and we solve for the
horizons of the full and SRB models Nfull ∈ {2, ..., N} and
NSRB ∈ {0, ..., N − 2}. We refer to a given model schedule
by the tuple (Nfull, NSRB).

We implement our proposed approach in MATLAB with a
13-DoF planar biped. All optimizations are formulated with
CasADi and solved with the non-linear interior-point solver
in Knitro 13.1. To validate our approach, MHPC is simulated
at 100 Hz for all model schedules using ode45.

B. Approximate Closed-Loop Trajectories

Repeatedly solving (2) generates trajectories that approx-
imate the closed-loop behavior of (MHPC). This allows us
to directly leverage TO to evaluate the closed-loop accumu-
lated cost for a given model schedule. Fig. 1 compares body
trajectories from (MHPC) with the approximate closed-loop
for two model schedules (6,4) and (6,0). With (6,0), the
approximate closed-loop trajectory is farther away from the
full-body optimized trajectory. For (6,4), the additional SRB
horizon reduces the gap between the full-body TO and the
approximate closed-loop.

C. Relative Cost Error

Fig. 2a illustrates the relative cost error (RCE) evaluated
from the approximated closed-loop trajectory for each model
schedule. There is a sharp change in RCE, at Nfull = 5,
above which many model schedules achieve low RCE and
successful walking in simulation. The diagonal lines indicate
isolines for the total horizon Nfull + NSRB. Note that the
RCE is high below 1 walking step and rapidly drops when
planning above 1 walking step.

D. Optimal Model Schedules

Fig. 2b shows the dimensionality of each model schedule,
which we wish to minimize. The boundaries delimit the
feasible sets of model schedules for ϵ = 0.1 and ϵ = 0.001,
as determined by the inequality constraint in (MS). Within
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Fig. 2. a) Relative cost error and b) normalized dimensionality of
(MHPC) for all possible model schedules. The three diagonal lines in
a) are isolines for the total horizon Nfull +NSRB that highlight horizons
of one walking step, two walking steps or the full horizon (N̂ = 23). In b),
for each choice of ϵ, the lines delimit the feasible sets of model schedules
from (MS) and the “+” signs mark the optimal solution for each ϵ.

these sets, the corresponding optimal schedules (4,7) and
(8,3) are marked by “+” signs.

While we formulate (MHPC) with a total of 23 stages,
the proposed method finds optimal model schedules that
substantially truncate the total horizon by making use of the
void model. We solved (MS) for 100 values of ϵ ranging
from 0.01% to 3%, and the optimal model schedules always
give total horizons Nfull +NSRB between 10 and 14 stages,
corresponding to between 1.1 and 1.6 walking steps. This
result is in line with previous work where it was shown
that planning beyond two walking steps does not provide
a significant advantage [11].

E. Relative Cost Errors from TO and Simulation

The RCE obtained with the TO-based approximations
vary similarly to the RCE from the simulations. To illustrate
this, we normalize both RCEs from TO and simulation by
their respective maxima, and compute their difference. As
shown in Fig. 3, the difference is close to 0 for most model
schedules, indicating that the shapes of each RCE closely



match. Therefore, the closed-loop performance of (MHPC)
is well approximated by the TO-based approach.
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Fig. 3. Normalized error of accumulated cost between the approximate
closed-loop (MHPC) and simulated (MHPC) trajectories for all model
schedule possibilities. The absence of gradient for the error in most of
the schedules indicate that the approximation is a good proxy for running
(MHPC) in a more accurate simulation.

VI. CONCLUSION AND OUTLOOK

We proposed a framework to systematically optimize the
model schedule to use along the planning horizon of MHPC.
We validated the approach with a proof of concept, where
we solve for optimal horizons of full-body and SRB models.
The framework leverages trajectory optimization to estimate
the closed-loop cost incurred by the robot under a MHPC
controller. The method finds model schedules that minimizes
the dimensionality of the MHPC constroller while keeping
the accumulated cost incurred by the robot close to optimal.

In this work, the number of possible model schedules
was sufficiently small to solve (MHPC) using enumeration.
Future work should make use of more efficient algorithms to
scale the approach for a wider variety of reduced order mod-
els. One possible approach is to solve (MS) using gradient-
free evolutionary algorithms or with a bilevel mixed-integer
non-linear solver with (MHPC) in the inner loop. For the
latter, the proposed MHPC formulation with integer variables
could be used directly, and recent work on optimization
based-dynamics could be leveraged [12].
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