
Horizon: 

A Trajectory Optimization Framework for Robotic Systems



Features
Robotics focus: built-in methods and robotics-oriented utilities

User-friendly interfaces: simplify the formulation process, set up an optimization 

with minimal effort

Comprehensive pipeline: all the modules to generate a complete robot motion only 

requiring standard inputs such as XML files

Versatility: generic enough to include all the necessary tools to prototype: 

• offline dynamic motion 

• receding horizon walking gait

• co-design a robot structure

• Open-source: based on open-source packages, and freely available itself



NLP formulation

objective function 
to minimize

dynamics 
of the system

desired 
constraints

subject to:

NLP problem set up using the symbolic framework provided by CasADi:

• cost and constrain functions are defined using symbolic expressions

• state-of-the-art implementation of algorithmic differentiation (AD)



Modules

Robot model 
acquisition

Problem
formulation

Solver 
selection

Receding
horizon

acquires robot model 

parsing the URDF

concise syntax to specify 

costs and constraints, 

and distribute them over

horizon

different solvers 

available to meet different 

requirements

tools for cheaply relocating 

costs and constraints 

to different nodes



Robot model acquisition

.jacobian()

.frameVelocity()

.forwarKinematics()

.aba()

.centroidalDynamics()

…

URDF

Robot model 
acquisition

Problem
formulation

Solver 
selection

Receding
horizon

• Parse the URDF file generating a ready-to-use model in Horizon

• From XML file to symbolic description compatible with the framework

• Pinocchio library for robot kinematics and dynamics

symbolic

model

parser



Problem formulation
Robot model 
acquisition

Problem
formulation

• Duration and discretization of time horizon

• Problem transcription:

1. Direct Multiple Shooting

2. Direct Collocation

2.1.

prb = Problem(nodes=50)

prb.setDt(dt)

Transcriptor.make("multiple_shooting", prb)

Solver 
selection

Receding
horizon



Problem formulation

• System dynamics:

1. Built-in models:

o Full body dynamics

o Single Rigid Body Dynamics

o Centroidal Dynamics

2. Custom implementation:

as differential-algebraic system of equation (DAE)

x = prb.createStateVariable("x", dim)

u = prb.createInputVariable("u", dim)

prb.setDynamics(x_dot)

Robot model 
acquisition

Problem
formulation

Solver 
selection

Receding
horizon



Problem formulation

• Functions and bounds definition:

o constraints and costs defined on desired nodes

o bounds for variables and constraints

constraint_1

constraint_2

cost_1

prb.createCost("qddot",

cs.sumsqr(u),

nodes=[1,2,15])

prb.createConstraint("frict_cones", f_c)

x.setBounds(ub, lb, nodes)

Robot model 
acquisition

Problem
formulation

Solver 
selection

Receding
horizon



Solvers

Solver selection depending on the user's requirements.

Custom implementations:

• Gauss-Newton Sequential Quadratic Programming (GN-SQP)

• multiple-shooting Iterative Linear-Quadratic Regulator (ILQR)

Off-the-shelf solvers available through CasADi interface:

• IPOPT/BONMIN,

• BlockSQP

• WORHP

• KNITRO and

• SNOPT

Robot model 
acquisition

Problem
formulation

Solver 
selection

Receding
horizon

Fast, useful for 
receding horizon 
formulation

Large-scale nonlinear 
optimization, interior-
point methods



• Optimized trajectory: combined result of bounds, constraints and cost functions

• The desired behavior can be achieved by tuning the formulation of the problem

• High performance index corresponds to the closeness of the trajectory to the desired behavior

Robot motion design



Receding horizon
Online scenario:

• real system state is changing

• user references are changing

Idea: update system state and user inputs before each iteration

Robot model 
acquisition

Problem
formulation

Solver 
selection

Receding
horizon

More effective if user 

references are changed 

“close to the tail”



Spot’s receding horizon walking

Costs:

• reference base link velocity

• postural

• regularization

Problem options:

• Full body dynamics

• N_nodes = 100

• dt = 0.1 s

Parameters:

• reference velocity

• contact schedule

• z trajectory

Constraints:​

• [stance] zero contact velocity

• [stance] unilateral contact force

• [swing] zero force

• [swing] prescribed z-trajectory

• force-acceleration consistency



Spot results
Formulation of the problem is similar between the different motions:
• schedule and duration of the contacts

Jump and turn Wheelie

Jump

Leap



Centauro robot performing a series of steps to change its heading:





analyze relevant parameters:

• maximum current

• torque

• angular velocity

to carry out the sizing of the motors



Co-design of bimanual manipulator

• Optimize link length and joint orientation to maximize manipulability



Intuitive robot operation through end-effector Cartesian control



Thank you for your attention!


	Diapositiva 1
	Diapositiva 2: Features
	Diapositiva 3: NLP formulation
	Diapositiva 4: Modules
	Diapositiva 5: Robot model acquisition
	Diapositiva 6
	Diapositiva 7: Problem formulation
	Diapositiva 8: Problem formulation
	Diapositiva 9: Solvers 
	Diapositiva 10: Robot motion design 
	Diapositiva 11: Receding horizon
	Diapositiva 12: Spot’s receding horizon walking
	Diapositiva 13: Spot results
	Diapositiva 14: Centauro robot performing a series of steps to change its heading:
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17: Co-design of bimanual manipulator
	Diapositiva 18
	Diapositiva 19: Thank you for your attention!

