
Horizon: 

A Trajectory Optimization Framework for Robotic Systems



Features
Robotics focus: built-in methods and robotics-oriented utilities

User-friendly interfaces: simplify the formulation process, set up an optimization 

with minimal effort

Comprehensive pipeline: all the modules to generate a complete robot motion only 

requiring standard inputs such as XML files

Versatility: generic enough to include all the necessary tools to prototype: 

• offline dynamic motion 

• receding horizon walking gait

• co-design a robot structure

• Open-source: based on open-source packages, and freely available itself



NLP formulation

objective function 
to minimize

dynamics 
of the system

desired 
constraints

subject to:

NLP problem set up using the symbolic framework provided by CasADi:

• cost and constrain functions are defined using symbolic expressions

• state-of-the-art implementation of algorithmic differentiation (AD)



Modules
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Robot model acquisition

.jacobian()

.frameVelocity()

.forwarKinematics()

.aba()

.centroidalDynamics()

…

URDF

Robot model 
acquisition

Problem
formulation

Solver 
selection

Receding
horizon

• Parse the URDF file generating a ready-to-use model in Horizon

• From XML file to symbolic description compatible with the framework

• Pinocchio library for robot kinematics and dynamics

symbolic

model

parser



Problem formulation
Robot model 
acquisition

Problem
formulation

• Duration and discretization of time horizon

• Problem transcription:

1. Direct Multiple Shooting

2. Direct Collocation

2.1.

prb = Problem(nodes=50)

prb.setDt(dt)

Transcriptor.make("multiple_shooting", prb)

Solver 
selection

Receding
horizon



Problem formulation

• System dynamics:

1. Built-in models:

o Full body dynamics

o Single Rigid Body Dynamics

o Centroidal Dynamics

2. Custom implementation:

as differential-algebraic system of equation (DAE)

x = prb.createStateVariable("x", dim)

u = prb.createInputVariable("u", dim)

prb.setDynamics(x_dot)
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Problem formulation

• Functions and bounds definition:

o constraints and costs defined on desired nodes

o bounds for variables and constraints

constraint_1

constraint_2

cost_1

prb.createCost("qddot",

cs.sumsqr(u),

nodes=[1,2,15])

prb.createConstraint("frict_cones", f_c)

x.setBounds(ub, lb, nodes)
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Solvers

Solver selection depending on the user's requirements.

Custom implementations:

• Gauss-Newton Sequential Quadratic Programming (GN-SQP)

• multiple-shooting Iterative Linear-Quadratic Regulator (ILQR)

Off-the-shelf solvers available through CasADi interface:

• IPOPT/BONMIN,

• BlockSQP

• WORHP

• KNITRO and

• SNOPT
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Receding
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Fast, useful for 
receding horizon 
formulation

Large-scale nonlinear 
optimization, interior-
point methods



• Optimized trajectory: combined result of bounds, constraints and cost functions

• The desired behavior can be achieved by tuning the formulation of the problem

• High performance index corresponds to the closeness of the trajectory to the desired behavior

Robot motion design



Receding horizon
Online scenario:

• real system state is changing

• user references are changing

Idea: update system state and user inputs before each iteration

Robot model 
acquisition

Problem
formulation
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selection

Receding
horizon

More effective if user 

references are changed 

“close to the tail”



Spot’s receding horizon walking

Costs:

• reference base link velocity

• postural

• regularization

Problem options:

• Full body dynamics

• N_nodes = 100

• dt = 0.1 s

Parameters:

• reference velocity

• contact schedule

• z trajectory

Constraints:​

• [stance] zero contact velocity

• [stance] unilateral contact force

• [swing] zero force

• [swing] prescribed z-trajectory

• force-acceleration consistency



Spot results
Formulation of the problem is similar between the different motions:
• schedule and duration of the contacts

Jump and turn Wheelie

Jump

Leap



Centauro robot performing a series of steps to change its heading:





analyze relevant parameters:

• maximum current

• torque

• angular velocity

to carry out the sizing of the motors



Co-design of bimanual manipulator

• Optimize link length and joint orientation to maximize manipulability



Intuitive robot operation through end-effector Cartesian control



Thank you for your attention!
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