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Abstract— The ability to generate dynamic walking in real-
time for bipedal robots with input constraints and underactua-
tion has the potential to enable locomotion in dynamic, complex
and unstructured environments. Yet, the high-dimensional na-
ture of bipedal robots has limited the use of full-order rigid
body dynamics to gaits which are synthesized offline and then
tracked online. In this work we develop an online nonlinear
model predictive control approach that leverages the full-order
dynamics to realize diverse walking behaviors. Additionally,
this approach can be coupled with gaits synthesized offline
via a desired reference to enable a shorter prediction horizon
and rapid online re-planning, bridging the gap between online
reactive control and offline gait planning. We demonstrate the
proposed method, both with and without an offline gait, on the
planar robot AMBER-3M in simulation and on hardware.

I. INTRODUCTION

In order for bipedal robots to reach their full potential of
navigating complex terrain inaccessible by wheeled robots,
it is necessary for them to demonstrate a rich set of dynami-
cally stable locomotion behaviors. Achieving this, especially
while leveraging phases of underactuation like their human
counterparts do, necessitates the dynamic coordination of the
whole-body dynamics of the robot. Planning for the next
foot strike must occur throughout the step in a manner that
accounts for the inherently nonlinear passive dynamics of the
system. Achieving diverse locomotion behaviors in complex
environments, therefore, motivates that whole-body planning
be done on the robot in real-time, thereby going beyond pre-
planned periodic walking gaits.

Many approaches for achieving locomotion use condensed
stability conditions like Zero-Moment Point (ZMP) [1], or
rely on other reduced-order models that simplify elements
such as leg mass [2], [3]. In contrast, Model Predictive
Control (MPC) provides a tool for the online synthesis of
general, aperiodic trajectories, allowing feedback of en-
vironmental parameters to be incorporated into dynamic
motion planning [4], [5]. In particular, by optimizing directly
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Fig. 1: AMBER-3M platform using the whole-body nonlin-
ear MPC incorporating an HZD gait. The optimized feet and
torso trajectories are visualized along the prediction horizon.

over contact forces, these methods have seen significant use
in online motion planning for quadrupedal robotics, with
extensive experimental results [6]. Whole-body motion plan-
ning results for bipedal walking have been predominantly
in simulation [7], [8] or used whole-body planning only
for non-walking tasks such as reaching [9]. Notably, the
online motion planning tools with remarkable experimental
results for quadrupedal locomotion have not yet achieved
commensurate results for bipedal robotics.

One of the key challenges in online whole-body motion
planning is computational limitations, as producing stable
locomotion requires optimizing over a sufficiently long hori-
zon. The methods for quadrupeds that have yielded experi-
mental results typically exploit low leg inertia to neglect leg
dynamics, reducing the state dimension in the optimization.
Transferring this reduction to bipedal systems is difficult,
however, as the legs compose a relatively high fraction of
the system’s total inertia. At the same time, simultaneously
considering both leg and torso dynamics results in many
degrees of freedom, making optimization over long time
horizons computationally intensive. Furthermore, the narrow
stance width and high center of mass of bipeds necessitate a
high planning frequency to counteract disturbances in under-
actuated dimensions. Thus, it is paramount to design whole-
body motion planners that balance the trade-off between
horizon length, model complexity, and planning frequency.

We make three contributions in this work. First, we
propose a nonlinear MPC approach for online whole-body



motion planning of bipedal robotic locomotion based on
existing methods used for quadrupedal locomotion [10],
which achieved a wide range of stable behaviors with a
planning horizon of 2 s and update frequency of up to 270Hz.
Second, to reduce the computational burden of online whole-
body planning, we incorporate a stable periodic walking gait
synthesized offline via Hybrid Zero Dynamics (HZD) [11]
into the nonlinear optimization problem. This information
permits robust walking while optimizing over shorter horizon
lengths (0.2 s) that require less computational effort and
allow rapid re-planning (850Hz) – this will be important
for achieving whole-body planning on 3D walking systems.
Lastly, we experimentally validate the proposed approach on
the planar bipedal robot AMBER-3M [12], demonstrating
standing, stepping in place, and walking. To the best of our
knowledge, this is the first experimental demonstration of
online whole-body locomotion planning for bipedal walking.

II. WHOLE-BODY MOTION PLANNING & CONTROL

Nonlinear MPC solves a optimization problem in a re-
ceding horizon manner by solving the following finite time
nonlinear optimal control problem:

minimize
u(·)

ϕ(x(tH)) +

∫ tH

0

l(x(t),u(t), t)dt, (1a)

subject to: x(0) = x0, (1b)
ẋ = f(x) + g(x)u, (1c)

x(t+i ) = ∆c(x(ti)), (1d)
heq(x,u, t) = 0, (1e)
hin(x,u, t) ≥ 0, (1f)

where tH is the length of the horizon, ϕ : X → R is
the terminal cost, l : X × Rm × R → R is the time-
varying running state-input cost, and ti are times of contact
mode transitions. The optimal control problem is solved
in real-time by updating the initial conditions (1b) with
the measured state of the system. Eq. (1c) describes the
system dynamics. heq : X × Rm × R → Req and hin :
X × Rm × R → Rin are generalized path equality and
inequality constraints, respectively. To solve this problem we
take a direct-multiple shooting transcription of the problem
together with a sequential quadratic programming approach
to handle nonlinearities [13]

Our nonlinear MPC problem will be constructed using the
OCS2 toolbox [14], which provides convenient interfaces
to the Pinocchio [15] rigid body library and CppAd [16]
automatic differentiation tools. Our formulation assumes that
the contact schedule associated with a given locomotion
mode (standing, stepping in place, walking) is given by the
user. The fixed contact schedule assumption simplifies the
optimization problem as the sequence of domains and timing
of contact mode transitions does not need to be optimized
[4], [10]. The position of the foot at contact is captured in the
optimization problem through its kinematic relationship with
joint coordinates. Moreover, we assume the user provides a
desired base pose and velocity to the MPC.

A. System Dynamics

The configuration of the robot may be described by a set
of d generalized coordinates:

q =
[
q⊤
b q⊤

j

]⊤ ∈ Q ≜ SE(3)×Qj , (2)

which include the base coordinates qb and joint coordinates
qj of the robot, respectively. The joint coordinates are
assumed to be fully actuated.

Using the Euler-Lagrange method, the system dynamics
corresponding to base and joint components in a contact
domain Dc are given by:[

Dbb, Dbj

D⊤
bj Djj

] [
q̈b

q̈j

]
+

[
hb

hj

]
=

[
0
Bj

]
τ +

[
J⊤
c,b

J⊤
c,j

]
λ. (3)

with symmetric positive definite inertia matrix D : Q →
Sd≻0, centrifugal, Coriolis, and gravitational terms h : X →
Rd, actuation matrix B : Q → Rd×m, torques τ ∈ Rm,
constraint forces λ ∈ R6nc and contact Jacobians Jc : Q →
R6nc×d.

Defining the state as x =
[
q⊤ q̇⊤]⊤ , and the control

inputs to optimize over as u =
[
q̈⊤
j , λ⊤]⊤, the system

dynamics may be rewritten to interpret the joint accelerations
q̈j and contact forces λ, instead of the torques τ , as
inputs. The computational benefit of this reparametrization
has been shown for reactive whole-body control [17] and
offline trajectory optimization [18]. To see this, we write the
dynamics in terms of non-actuated base coordinates and fully
actuated joint coordinates:

ẋ =

 q̇

D−1
bb

(
−hb −Dbjq̈j + J⊤

c,bλ
)

q̈j

 . (4)

The corresponding joint torques may be expressed as:

τ = B−1
j

(
D⊤

bjq̈b + hj +
[
Djj −J⊤

c,j

] [q̈j

λ

])
. (5)

The dynamics in (4) fully encode the challenge of under-
actuation and encapsulate the core of the floating-base dy-
namics. Equation (5) plays a secondary role and is only
required when formulating torques constraints.

The contact transition maps in (1d) have been set to
identity maps for now and will be investigated in future work.

B. Cost Functions

The cost function is formulated as a nonlinear least square
cost around a given state εx, input εu and cartesian swing
leg εi reference trajectory.

l(x,u, t) =
1

2
ε⊤x Qεx +

1

2
ε⊤uRεu +

1

2

∑
i

ε⊤i Wεi, (6)

where Q,R, and W are positive definite weighting matrices.
The references are defined heuristically (see Section II-C)

or via a walking gait synthesized offline using HZD.



TABLE I: MPC Planning Frequency (10 SQP Iterations)

Horizon Length [s] 2.0 1.0 0.5 0.2
MPC Frequency [Hz] 270 480 670 850

C. Reference Trajectories

a) HZD Trajectory: HZD state and input reference
trajectories, xref(t) and uref(t), are found offline for the
whole-body nonlinear dynamics using the FROST toolbox
[19] and stored as Bézier polynomials. This process is
completed by fixing a target gait sequence and a forward
velocity, and adding various other state and input constraints
to a nonlinear trajectory optimization program which ensure
the underactuated dynamics of the system display stable peri-
odic behavior. For planar systems, stability can be enforced
directly in the optimization program [20], and for general
systems it can be verified a-posteriori via the Poincaré return
map [11].

b) Heuristic Trajectory: To evaluate the relative im-
pact of using a gait synthesized offline via HZD in the
cost function, we produce a heuristic reference trajectory,
using nominal joint configurations and gravity compensating
inputs, to be compared against.

D. Constraints

The following constraints are imposed in problem (1).
1) Zero force on swing foot
2) Zero acceleration on stance foot
3) Contact force lies within friction cone
4) Torque limits using (5)

E. Low-Level Controller

Tthe state and input trajectories generated by MPC are
interpolated at a high frequency and converted to a feed-
forward control torques, τMPC, via (5). Model errors are
compensated by adding a proportional-derivative torque, τPD,
and a friction compensation torque, τFC, to the feed-forward
torque:

τ = τMPC + τPD + τFC. (7)

III. AMBER IMPLEMENTATION & RESULTS

The AMBER-3M platform is a 5-link planar bipedal robot,
which has four open loop torque controlled BLDC motors
connected via harmonic drives to the hip and knee joints.
All planning, control, and estimation loops were done on
separate threads on an offboard Ryzen 9 5950x CPU @
3.4GHz. Benchmarks of the maximum obtainable MPC
frequency for different horizon lengths can be seen in Table
I. To isolate how the system’s behavior depends on horizon
length, all experiments were conducted with a consistent
MPC frequency of 100Hz.

As can be seen in the supplementary video [21], the
proposed MPC formulation is capable of simultaneously sta-
bilizing the underactuated system dynamics and synthesizing
valid motion trajectories for a broad range of gait pattern
and target velocities both in simulation and on hardware.
To evaluate the effect of changing reference signals on
the feasibility and robustness of the full control pipeline,

TABLE II: Maximum disturbance rejection and step adaption
range (difference between smallest and largest observed step
length). MPC planning frequency clamped at 100 Hz.

Disturbance Rejection Step Range
Horizon Length 2 s 0.5 s 0.2 s 2 s
Lumped Mass MPC 2 N - - -
MPC + No Terminal 22 N - - 0.63 m
MPC + Heuristic 22 N 22 N - 0.67 m
MPC + HZD 22 N 22 N 20 N 1.10 m
HZD + PD 30 N 0.14 m

a sequence of disturbances of increasing magnitude was
applied in simulation to different MPC configurations. The
results of these simulations are summarized in Table II.

First, we remark that the results of the Lumped Mass MPC
confirm the need for whole-body online planning methods,
especially for robots like AMBER-3M which have a non-
negligible mass distribution concentrated in the legs.

Next, note that the MPC approach fails quickly for shorter
horizon length when no terminal cost is present. When a
heuristic terminal component is added, the robustness of
the system dramatically increases. Furthermore, when the
proposed MPC approach is combined with an HZD-based
reference trajectory for running and terminal costs, the hori-
zon length can be shortened to as low as 0.2 seconds, which
drastically reduces the computational complexity. Finally, it
is important to note that at a disturbance of 22N during
walking the foot begins to slip, causing all of the MPC based
methods to fail. The HZD with PD method exhibits more
robustness to foot slipping and is therefore able to endure
larger disturbances, as it does not model the disturbances.
On the other hand, the MPC methods naturally have a large
variability in footstep locations in order to stabilize the
system which we believe will be critical for bipedal robots
operating on real-world terrain.

The MPC with a heuristic reference trajectory and a
horizon length of 1.0 second, and the MPC with an HZD
trajectory and a horizon length of 0.5 seconds were then
deployed on the AMBER hardware. As seen in Fig. 2,
both methods produce forward walking and have a visually
distinct gait.

IV. CONCLUSION AND OUTLOOK

In this work, we proposed a whole-body nonlinear MPC
framework that enables online gait optimization using the full
rigid body dynamics of a bipedal system. The viability of the
presented control structure was shown in simulation and on
hardware in a variety of robust dynamic behaviors, including
standing, stepping in place, and walking. The addition of a
trajectory tracking cost around an offline generated HZD ref-
erence enabled similarly robust locomotion at a significantly
shorter planning horizon when compared with a heuristic
reference or no reference. Motivated by the experimental
results and promising reduction in computational complexity,
future work will investigate the theoretical properties of
using HZD trajectories as terminal components, as well as
extensions to 3D walking bipeds.



Fig. 2: Gait tiles and joint angle trajectories for forward walking behavior of the whole body MPC at a horizon length of 1
second (top, left), and the whole body MPC+HZD at a horizon length of 0.5 seconds (bottom, right).
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