Loco-Manipulation Tasks for Self-Relocatable Space Robots

<u>Maximo A. Roa</u>¹, Ismael Rodriguez¹, Anatoliy Huzynets², Hrishik Mishra¹, Bernhard Brunner¹, Gerhard Grunwald¹

¹German Aerospace Center (DLR), Institute of Robotics and Mechatronics

²Politecnico di Milano

HUMANOIDS 2022 November 29, 2022

In-Space Assembly

- Key technology for creating large structures in space
- Requires autonomous robotics
- Efficient exploitation of loco-manipulation abilities requires suitable planning tools
- Whole-body motion, intermittent contacts, are features similar to multi-contact locomanipulation in humanoid robots

Background

Active HOTDOCK

Passive HOTDOCK

Multi-Arm Robot (MAR)

2020-2022

Walking Manipulator (WM)

2019-2021

Control and Co-simulation frameworks

Planning Scenarios

- Locomotion
- Manipulation
- Loco-manipulation

Constraints for a valid plan:

- Geometric: collision avoidance,
- **Kinematic:** joint range, velocity and acceleration limits,
- Dynamic: joint torque limits and limits of the coupling devices.

Graph representation:

- Nodes: robot contact states
- Edges: transitions between states

Planning Approach

Locomotion State of the robot: s = $\{b,r_b,q\}$.

Locomotion: graph search performed with breadth-first search + queue reordering, minimizing a weighted sum:

$$node\ cost = \frac{|b_i - b_{target}|}{|b_{parent} - b_{target}|}$$
 $edge\ cost = \max \frac{\tau_i}{\tau_{lim_i}}$

Manipulation

effector of the end Poses corresponding to approach/contact/lift-off of the pick & $\min_{b,r_b,r_t} c_{tot}(b,r_b,r_t) = w_l c_l(b) + w_m c_m(b,r_b,r_t)$ place task:

The axial symmetry of the SI allows 4 different grasping modes Optimization is performed to evaluate feasibility and cost of the grasping alternatives:

$$\min_{r_t \in R_t} c_m(r_t) = \max \frac{\tau_i}{\tau_{lim_i}}$$

Loco-manipulation

Candidate manipulation plans are searched by optimizing:

$$\min_{b,r_b,r_t} c_{tot}(b,r_b,r_t) = w_l c_l(b) + w_m c_m(b,r_b,r_t)$$

A locomotion plan is searched from the starting state to the support associated to a candidate manipulation plan.

Results

