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Agile and Dynamic Locomotion

Fundamental motor skills for deployment 
of humanoid bipeds in real applications
→ Efficiently and effectively traverse 
environments

→ Large contact forces (& momentum)

→ Multiple impacts 

→ Aerial phases (limited control action)

→ Adaptability

→ Whole-Body motions 

Challenges:
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Planning and control 
of energy-efficient 
dynamic motions.

03.

Optimal Control

PAL Robotics 
Development of technologies for agile and dynamic locomotion

High efficiency and 
robustness, with 
high-power output, 
back-drivable.

01.

Electric Linear 
Actuators

Resilience to impact 
and improved 
mass/inertia 
distribution.

02.

Serial-Parallel 
Hybrid Chains
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Kangaroo

● 12 DoFs

● 2 types/sizes linear actuators

● 12 serial-parallel hybrid mechanisms

● Non-linear transmission

● Low inertia/mass legs

● High impact resilience
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Hip Yaw 
actuator

Hip Pitch/Roll 
actuators

Ankle Pitch/Roll 
actuators

Leg-length 
Actuator

Kangaroo

● 12 DoFs

● 2 types/sizes linear actuators

● 12 serial-parallel hybrid mechanisms

● Non-linear transmission

● Low inertia/mass legs

● High impact resilience
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Hip Yaw 
actuator

Hip Pitch/Roll 
actuators

Ankle Pitch/Roll 
actuators

Leg-length 
Actuator

No actuators 
nor electronics!

Kangaroo

● 12 DoFs

● 2 types/sizes linear actuators

● 12 serial-parallel hybrid mechanisms

● Non-linear transmission

● Low inertia/mass legs

● High impact resilience
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Kangaroo

● 12 DoFs

● 2 types/sizes linear actuators

● 12 serial-parallel hybrid mechanisms

● Non-linear transmission

● Low inertia/mass legs

● High impact resilience

“handcrafted” jump
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Non-linear transmission
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Modeling

Full-Model

● 6 serial-parallel hybrid chains

● 38 DoFs

● 6 actuated DoFs

● 32 passive (constrained) DoFs

● Closed Linkage Library (CLL) for IK/FK and ID w/ floating-base

and serial-parallel hybrid chains (multi-body constraint based)

● URDF-based model + GAZEBO simulation
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Modeling

Simple-Model

● 1 serial-parallel hybrid chains

● 8 DoFs

● 5 actuated DoFs

● 1 virtual actuated DoF

● 2 passive (constrained) DoFs

● Simple constraint in IK and ID

● URDF-based model + GAZEBO simulation
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Modeling

Full-ModelSimple-Model

More suitable for 
instantaneous

mapping from/to 
actuators 

considering all the 
non-linearities of 
the series-parallel 

hybrid chains.

More suitable for 
planning and

control, especially 
considering a 

preview horizon.
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Modeling

Full-ModelSimple-Model

More suitable for 
instantaneous

mapping from/to 
actuators 

considering all the 
non-linearities of 
the series-parallel 
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More suitable for 
planning and
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Agile and Dynamic Locomotion
Planning and Control Pipeline

𝒒, ሶ𝒒

𝝉𝒙𝑟 , ሶ𝒙𝑟 , 𝒒𝑟 , ሶ𝒒𝑟

Trajectory 
Optimization

Robot

Whole-Body ID

MPC

Off-Line On-Line

Floating-Base 
estimation

Transmission

motion

motion

motion
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Agile and Dynamic Locomotion
Planning and Control Pipeline
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Floating-Base 
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Transmission

motion

motion

motion
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Full dynamics of Simple-Model

Trajectory Optimization

𝑴 𝒒 ሶ𝝊 + 𝒉 𝒒, 𝝊 = 𝑺𝝉 + 𝑱𝑐
𝑇 𝒒 𝒇𝑐 + 𝑱𝑣

𝑇 𝒒 𝝀

𝑱𝑐 𝒒 ሶ𝝊 + ሶ𝑱𝑐 𝒒, 𝝊 𝝊 = 𝟎

𝑱𝑣 𝒒 ሶ𝝊 + ሶ𝑱𝑣 𝒒, 𝝊 𝝊 = 𝟎

Contacts + Serial-Parallel Hybrid chains
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Full dynamics of Simple-Model

Trajectory Optimization

𝑴 𝒒 ሶ𝝊 + 𝒉 𝒒, 𝝊 = 𝑺𝝉 + 𝑱𝑐
𝑇 𝒒 𝒇𝑐 + 𝑱𝑣

𝑇 𝒒 𝝀

𝑱𝑐 𝒒 ሶ𝝊 + ሶ𝑱𝑐 𝒒, 𝝊 𝝊 = 𝟎

𝑱𝑣 𝒒 ሶ𝝊 + ሶ𝑱𝑣 𝒒, 𝝊 𝝊 = 𝟎

Contacts + Serial-Parallel Hybrid chains

OCP

𝒙𝑘 =
𝒒
𝝊

𝒖𝑘 =

ሶ𝝊
𝒇0
⋮

𝒇𝑐−1
𝝀

𝒙𝑘+1 = 𝑓 𝒙𝑘 , 𝒖𝑘

𝑺𝝉 = 𝑴 𝒒 ሶ𝝊 + 𝒉 𝒒, 𝝊 − 𝑱𝑐
𝑇 𝒒 𝒇𝑐 − 𝑱𝑣

𝑇 𝒒 𝝀
𝑱𝑐 𝒒 ሶ𝝊 + ሶ𝑱𝑐 𝒒, 𝝊 𝝊 = 𝟎

𝑱𝑣 𝒒 ሶ𝝊 + ሶ𝑱𝑣 𝒒, 𝝊 𝝊 = 𝟎

𝒇𝑐 ⊂ ℱ𝑐

N states
N-1 controls

Multiple-shooting
Double integrator (inverse dynamics) 

Friction cones

𝝉𝑚 ≤ 𝝉 ≤ 𝝉𝑀 Torque limits

Explicit contacts scheduling
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Variable-Time Multiple-Shooting

• Time between nodes is a variable

• Less node

• Less accurate solution

Explicit contact scheduling

Fixed-Time Multiple-Shooting

• Time between nodes is fixed

• More nodes

• More accurate solution

𝒙0
𝒙1

𝒙2

𝒙3

𝒙4
𝒖0

𝒙5
𝒖1

𝒖2
𝒖3

𝒖4

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

∆𝑡0 ∆𝑡1∆𝑡2 ∆𝑡3 ∆𝑡4

∆𝑡1 + ∆𝑡2 + ∆𝑡3= 𝑡𝑎𝑖𝑟

𝒙0
𝒙1

𝒙2

𝒙3

𝒙4
𝒖0

𝒙5

𝒖1
𝒖2 𝒖3

𝒖4

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

𝑡𝑎𝑖𝑟

𝑡6 𝑡7 𝑡8 𝑡9

Permits to 

find times 

of motion 

phases.

Discretized 

same as  

MPC.

…

…

N-1 Δtimes
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Library of Motions
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Library of Motions
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● Implementation based on Horizon framework [1] (CasADi + ipopt, in 

Python)

● Reuse of previous solutions as initial guess for new motions (eg: Jump, 50 

nodes, 614 Vs 143 iterations, ~4.3x less iterations)

● Floating-base dynamics constraint not always 100% satisfied

● Inverse Dynamics formulation faster (less and faster iterations) than 

Forward Dynamics

Trajectory Optimization

[1] Ruscelli F., Laurenzi A., Tsagarakis N.G., Mingo Hoffman E. “Horizon: A Trajectory Optimization Framework for Robotic Systems.” Frontiers in Robotics & AI. 2022
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Agile and Dynamic Locomotion
Planning and Control Pipeline

𝒒, ሶ𝒒

𝝉𝒙𝑟 , ሶ𝒙𝑟 , 𝒒𝑟 , ሶ𝒒𝑟

Trajectory 
Optimization

Robot

Whole-Body ID

MPC

Off-Line On-Line

Floating-Base 
estimation

Transmission

motion

motion

motion



WORKSHOP Advancement in Trajectory Optimization and Model Predictive Control for Legged Systems

Agile and Dynamic Locomotion
Planning and Control Pipeline based on TO and MPC

𝒒, ሶ𝒒

𝝉𝒙𝑟 , ሶ𝒙𝑟 , 𝒒𝑟 , ሶ𝒒𝑟

Trajectory 
Optimization

Robot

Whole-Body ID

MPC

Off-Line On-Line

Floating-Base 
estimation

Transmission

motion

motion

motion
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SRBD

MPC

𝒇𝑐,𝑖

𝒄𝑖

𝒓
𝒈

ሷ𝒓

𝝎

𝑚 ሷ𝒓 =෍

𝑖=0

𝑐−1

𝒇𝑖 +𝑚𝒈

𝑰 ሶ𝝎 + 𝝎 × 𝑰𝝎 =෍

𝑖=0

𝑐−1

(𝒄𝒊 − 𝒓) × 𝒇𝑖
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Linearized SRBD [2]

MPC

[2] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control,” in IEEE RSJ International 
Conference on Intelligent Robots and Systems, 2018

𝒇𝑖

𝒄𝑖

𝒓
𝒈

ሷ𝒓

𝝎

𝑚 ሷ𝒓 =෍

𝑖=0

𝑐−1

𝒇𝑖 +𝑚𝒈

𝑰 ሶ𝝎 + 𝝎 × 𝑰𝝎 =෍

𝑖=0

𝑐−1

(𝒄𝒊 − 𝒓) × 𝒇𝑖

ሷ𝒓 =
1

𝑚
෍

𝑖=0

𝑐−1

𝒇𝑖 +𝑚𝒈

ሶ𝝎 = 𝑰−1 ෍

𝑖=0

𝑐−1

(𝒄𝒊 − 𝒓) × 𝒇𝑐,𝑖

𝑰 = 𝑹𝜣𝑰ℬ𝑹𝜣
𝑇
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Linearized SRBD [2]

MPC

[2] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control,” in IEEE RSJ International 
Conference on Intelligent Robots and Systems, 2018

𝑚 ሷ𝒓 =෍

𝑖=0

𝑐−1

𝒇𝑖 +𝑚𝒈

𝑰 ሶ𝝎 + 𝝎 × 𝑰𝝎 =෍

𝑖=0

𝑐−1

(𝒄𝒊 − 𝒓) × 𝒇𝑖

𝒇𝑖

𝒄𝑖

𝒓
𝒈

ሷ𝒓

𝝎

𝒙𝑘 =

𝚯
𝒓
𝝎
ሶ𝒓

, 𝒖𝑘=
𝒇0
⋮

𝒇𝑐−1

ሷ𝒓 =
1

𝑚
෍

𝑖=0

𝑐−1

𝒇𝑖 +𝑚𝒈

ሶ𝝎 = 𝑰−1 ෍

𝑖=0

𝑐−1

(𝒄𝒊 − 𝒓) × 𝒇𝑐,𝑖

𝑰 = 𝑹𝜣𝑰ℬ𝑹𝜣
𝑇

𝒙𝑘+1 = 𝑨𝑘𝒙𝑘 +𝑩𝑘𝒖𝑘

𝒇𝑐 ⊂ ℱ𝑐

• k = 0, feedback 
from the robot

• k > 0 from 
desired state 
trajectory

Playing with liniearized
friction cones is
possible to 
add/remove contacts
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Linearized SRBD [2]

MPC

[2] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control,” in IEEE RSJ International 
Conference on Intelligent Robots and Systems, 2018

𝑚 ሷ𝒓 =෍

𝑖=0

𝑐−1

𝒇𝑖 +𝑚𝒈

𝑰 ሶ𝝎 + 𝝎 × 𝑰𝝎 =෍

𝑖=0

𝑐−1

(𝒄𝒊 − 𝒓) × 𝒇𝑖

𝒇𝑖

𝒄𝑖

𝒓
𝒈

ሷ𝒓

𝝎

min
𝒙,𝒖

𝒙 − 𝒙𝑟 𝑸 + 𝒖 𝑹

𝒙𝑘 =

𝚯
𝒓
𝝎
ሶ𝒓

, 𝒖𝑘=
𝒇0
⋮

𝒇𝑐−1

ሷ𝒓 =
1

𝑚
෍

𝑖=0

𝑐−1

𝒇𝑖 +𝑚𝒈

ሶ𝝎 = 𝑰−1 ෍

𝑖=0

𝑐−1

(𝒄𝒊 − 𝒓) × 𝒇𝑐,𝑖

𝑰 = 𝑹𝜣𝑰ℬ𝑹𝜣
𝑇

𝒙𝑘+1 = 𝑨𝑘𝒙𝑘 +𝑩𝑘𝒖𝑘

𝒇𝑐 ⊂ ℱ𝑐

Reference state 
along a trajectory

Cost
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Linearized SRBD [2]

MPC

[3] Stellato, B. and Banjac, G. and Goulart, P. and Bemporad, A. and Boyd, S. , “OSQP: an operator splitting solver for quadratic programs ,” in Mathematical Programming 
Computation, 2020

𝒇𝑖

𝒄𝑖

𝒓
𝒈

ሷ𝒓

𝝎

min
𝒘

𝒘𝑇𝑯𝒘+ 𝒈𝑇𝒘

𝑠. 𝑡. 𝑪𝒘 ≤ 𝒄

QP

• Efficiently solved using OSQP [3]

• Sparse implementation using Eigen

• 40 nodes, dt = 30 ms

• solution time 3 ms
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TO ► MPC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

0 0 0 0 1 2 3 2 1 0

Horizon

New reference
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TO ► MPC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

0 0 0 1 2 3 2 1 0

Horizon

New reference
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TO ► MPC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

0 0 1 2 3 2 1 0

Horizon

New reference
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TO ► MPC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

0 1 2 3 2 1 0

Horizon

New reference
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TO ► MPC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

1 2 3 2 1 0

Horizon

New reference
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TO ► MPC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

2 3 2 1 0

Horizon

New reference



WORKSHOP Advancement in Trajectory Optimization and Model Predictive Control for Legged Systems

TO ► MPC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

3 2 1 0

Horizon
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TO ► MPC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

2 1 0 0

Horizon
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TO ► MPC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

1 0 0 0

Horizon
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TO ► MPC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

0 0 0 0

Horizon
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TO ► MPC ► WBC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

Whole-Body ID

Floating-Base 
estimation

Transmission
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TO ► MPC ► WBC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

Whole-Body ID

Floating-Base 
estimation

Transmission

• Separated sub-mechanisms implemented as ros_control transmission

• mapping from/to actuator quantities
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TO ► MPC ► WBC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

Whole-Body ID

Floating-Base 
estimation

Transmission

• Simple model

• QP-based velocity estimation + FK
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TO ► MPC ► WBC

𝒒𝑟 , ሶ𝒒𝑟

motion

motion

motion

Trajectory
Dispatcher 𝒙𝑟 , 𝒄𝒊, 

MPC

𝒙1, 𝒖0

Whole-Body ID

Floating-Base 
estimation

Transmission

• Simple model

• Acceleration-based QP with closed kinematics constraints, single priority

• Constrained forces are computed separately and mapped as torques in the ID
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TO ► MPC ► WBC: Lateral Swing
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TO ► MPC ► WBC: Jump

● Centroidal MPC:

● Solution time ~3 ms

● 40 nodes

● dt = 30 ms

● mpc thread = 30 ms
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TO ► MPC ► WBC: Jump

● The MPC is used for  both jump and landing phases

● During aerial phase, the joint references from the TO are used

● During landing phase using a constant state reference is 

more effective

● Closing the loop with the WBC requires several tuning on both 

the MPC and the WBC to achieve good tracking
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SRBD

MPC

𝒇𝑐,𝑖

𝒄𝑖

𝒓
𝒈

ሷ𝒓

𝝎

𝑚 ሷ𝒓 =෍

𝑖=0

𝑐−1

𝒇𝑖 +𝑚𝒈

𝑰 ሶ𝝎 + 𝝎 × 𝑰𝝎 =෍

𝑖=0

𝑐−1

(𝒄𝒊 − 𝒓) × 𝒇𝑖

𝒙𝑘 =

𝒓
𝝆
𝒄0
⋮

𝒄𝑐−1
ሶ𝒓
𝝎
ሶ𝒄0
⋮
ሶ𝒄𝑐−1

, 𝒖𝑘=

ሷ𝒓
ሶ𝝎
ሷ𝒄0
⋮
ሷ𝒄𝑐−1
𝒇

0

⋮
𝒇𝑐−1

• We optimize over the SRBD state and contacts
• We keep all the non-linearities 
• Explicit contact scheduling
• Receding horizon
• Inverse Dynamics approach 
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MPC

• Tracking of linear CoM and 
base angular velocities 

• 20 nodes
• T = 1 second
• 2 steps ahead
• ipopt (ma27), ~0.035 sec with 

line feet, at least 5 iterations
• SQP (OSQP) with Gauss-

Newton approximation, ~0.025 
sec with line feet, 1 iteration is 
fine
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MPC ► WBC (IK, FULL-MODEL)
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MPC ► WBC

Luca Rossini, PhD Student (IIT)

Visiting student at the Human Centered Robotics 

Laboratory, The University of Texas at Austin, lead by 

Prof. Luis Sentis.

http://sites.utexas.edu/hcrl


Conclusion
● Planning and Control pipeline based on Optimal Control techniques

● TO: based on simple model of Kangaroo permits to generate a great
variety of motions

● MPC: 
● Linearized SRBD: faster but approximations penalizes angular

part of the dynamics
● Full SRBD: slower but usable as Reference Governor or fully

closed loop

● Experiments on Kangaroo coming soon!



Thank you

Enrico Mingo Hoffman
enrico.mingo@pal-robotics.com

pal-robotics.com

https://pal-robotics.com/
https://pal-robotics.com/
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