

Trajectory Optimization and Model Predictive Control for Agile Bipedal Locomotion

Humanoids 2022, Ginowan, Okinawa, Japan

Agile and Dynamic Locomotion

Fundamental motor skills for deployment of humanoid bipeds in real applications

→ Efficiently and effectively traverse environments

Challenges:

- → Large contact forces (& momentum)
- → Multiple impacts
- → Aerial phases (limited control action)
- → Adaptability
- → Whole-Body motions

PAL Robotics

Development of technologies for agile and dynamic locomotion

01.

Electric Linear Actuators

High efficiency and robustness, with high-power output, back-drivable.

02.

Serial-Parallel Hybrid Chains

Resilience to impact and improved mass/inertia distribution.

Optimal Control

Planning and control of energy-efficient dynamic motions.

- . 12 DoFs
- 2 types/sizes linear actuators
- 12 serial-parallel hybrid mechanisms
- Non-linear transmission
- Low inertia/mass legs
- . High impact resilience

- . 12 DoFs
- 2 types/sizes linear actuators
- 12 serial-parallel hybrid mechanisms
- Non-linear transmission
- Low inertia/mass legs
- . High impact resilience

- . 12 DoFs
- 2 types/sizes linear actuators
- 12 serial-parallel hybrid mechanisms
- Non-linear transmission
- Low inertia/mass legs
- High impact resilience

- . 12 DoFs
- 2 types/sizes linear actuators
- 12 serial-parallel hybrid mechanisms
- Non-linear transmission
- Low inertia/mass legs
- . High impact resilience

"handcrafted" jump

Non-linear transmission

Full-Model

- 6 serial-parallel hybrid chains
- 38 DoFs
 - 6 actuated DoFs
 - 32 passive (constrained) DoFs
- Closed Linkage Library (CLL) for IK/FK and ID w/ floating-base and serial-parallel hybrid chains (multi-body constraint based)
- URDF-based model + GAZEBO simulation

Simple-Model

- 1 serial-parallel hybrid chains
- 8 DoFs
 - 5 actuated DoFs
 - 1 virtual actuated DoF
 - 2 passive (constrained) DoFs
- Simple constraint in IK and ID
- URDF-based model + GAZEBO simulation

Simple-Model

More suitable for planning and control, especially considering a preview horizon.

Full-Model

More suitable for instantaneous mapping from/to actuators considering all the non-linearities of the series-parallel hybrid chains.

Agile and Dynamic LocomotionPlanning and Control Pipeline

Agile and Dynamic LocomotionPlanning and Control Pipeline

Trajectory Optimization

Full dynamics of Simple-Model

Trajectory Optimization

Full dynamics of Simple-Model

OCP

$$m{x}_k = egin{bmatrix} m{q} \ m{v} \end{bmatrix} \qquad m{u}_k = egin{bmatrix} m{v} \ m{f}_0 \ dots \ m{f}_{c-1} \ m{\lambda} \end{bmatrix} \qquad m{N-1} ext{ controls}$$

$$x_{k+1} = f(x_k, u_k)$$
 Multiple-shooting Double integrator (inverse dynamics)

$$S\tau = M(q)\dot{v} + h(q,v) - J_c^T(q)f_c - J_v^T(q)\lambda$$

$$J_c(q)\dot{v} + \dot{J_c}(q,v)v = 0$$

$$J_v(q)\dot{v} + \dot{J_v}(q,v)v = 0$$
Explicit contacts scheduling

$$m{f}_c \subset \mathcal{F}_c$$
 Friction cones $m{ au}_m \leq m{ au} \leq m{ au}_M$ Torque limits

Explicit contact scheduling

Variable-Time Multiple-Shooting

- Time between nodes is a variable
- Less node
- Less accurate solution

Permits to find times of motion phases.

Fixed-Time Multiple-Shooting

- Time between nodes is fixed
- More nodes
- More accurate solution

Discretized same as MPC.

N-1 Δtimes

Library of Motions

Library of Motions

Trajectory Optimization

- Implementation based on Horizon framework [1] (CasADi + ipopt, in Python)
- Reuse of previous solutions as initial guess for new motions (eg: Jump, 50 nodes, 614 Vs 143 iterations, ~4.3x less iterations)
- Floating-base dynamics constraint not always 100% satisfied
- Inverse Dynamics formulation faster (less and faster iterations) than
 Forward Dynamics

Agile and Dynamic LocomotionPlanning and Control Pipeline

Agile and Dynamic Locomotion

Planning and Control Pipeline based on TO and MPC

[2] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, "Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control," in IEEE RSJ International Conference on Intelligent Robots and Systems, 2018

[2] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, "Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control," in IEEE RSJ International Conference on Intelligent Robots and Systems, 2018

[2] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, "Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control," in IEEE RSJ International Conference on Intelligent Robots and Systems, 2018

QP

$$\min_{w} \mathbf{w}^{T} \mathbf{H} \mathbf{w} + \mathbf{g}^{T} \mathbf{w}$$
s. t. $\mathbf{C} \mathbf{w} \leq \mathbf{c}$

- Efficiently solved using OSQP [3]
- Sparse implementation using Eigen
- 40 nodes, dt = 30 ms
 - solution time 3 ms

[3] Stellato, B. and Banjac, G. and Goulart, P. and Bemporad, A. and Boyd, S., "OSQP: an operator splitting solver for quadratic programs," in Mathematical Programming Computation, 2020

TO ► MPC

- Separated sub-mechanisms implemented as ros_control transmission
- mapping from/to actuator quantities

- Simple model
- QP-based velocity estimation + FK

- Simple model
- Acceleration-based QP with closed kinematics constraints, single priority
- Constrained forces are computed separately and mapped as torques in the ID

TO ► MPC ► WBC: Lateral Swing

TO ► MPC ► WBC: Jump

- Centroidal MPC:
 - Solution time ~3 ms
 - 40 nodes
 - dt = 30 ms
 - mpc thread = 30 ms

TO ► MPC ► WBC: Jump

- The MPC is used for both jump and landing phases
- During aerial phase, the joint references from the TO are used
- During landing phase using a constant state reference is more effective
- Closing the loop with the WBC requires several tuning on both the MPC and the WBC to achieve good tracking

MPC

$$oldsymbol{x}_k = egin{bmatrix} oldsymbol{r} oldsymbol{
ho} \ oldsymbol{c} \ \ oldsymbol{c} \ oldsymbol{c} \ oldsymbo$$

- We optimize over the SRBD state and contacts
- We keep all the non-linearities
- Explicit contact scheduling
- Receding horizon
- Inverse Dynamics approach

MPC

- Tracking of linear CoM and base angular velocities
- 20 nodes
- T = 1 second
- 2 steps ahead
- ipopt (ma27), ~0.035 sec with line feet, at least 5 iterations
- SQP (OSQP) with Gauss-Newton approximation, ~0.025 sec with line feet, 1 iteration is fine

MPC ► WBC (IK, FULL-MODEL)

MPC ► WBC

Luca Rossini, PhD Student (IIT)

The University of Texas at Austin
Aerospace Engineering
and Engineering Mechanics
Cockrell School of Engineering

Visiting student at the <u>Human Centered Robotics</u>
<u>Laboratory</u>, The University of Texas at Austin, lead by Prof. Luis Sentis.

Conclusion

- Planning and Control pipeline based on Optimal Control techniques
- TO: based on simple model of Kangaroo permits to generate a great variety of motions

MPC:

- Linearized SRBD: faster but approximations penalizes angular part of the dynamics
- **Full SRBD:** slower but usable as Reference Governor or fully closed loop
- Experiments on Kangaroo coming soon!

Thank you

Enrico Mingo Hoffman enrico.mingo@pal-robotics.com

pal-robotics.com

