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Closed-loop nonlinear model predictive control
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Nonlinear whole-body MPC for legged robots



unactuated dynamics = evolution of momentum
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Decomposition of optimal control problem
equ | optimization of momentum + contact forces

Il kinematics optimization

equivalent to a manipulator

any combination of motions and contact forces will satisfy actuated dynamics
(ignoring actuation limits)

0 [Herzog et al., Humanoids 2015,IROS 2016



centroidal dynamics optimization
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ﬁ. 1 [Meduri et al,, arxiv.org/abs/2201.07601,T-RO in press]



centroidal dynamics optimization

min Z ¢F(FC) T ¢ZB (XC()M7 XCOM? LCOM) Separable cost

Fe, Xcom forces vs. positions/momentum
XcoM, Licom

subject to.

. ) __ Fc . .
mXcon = mg+ ) Equality constraints

C
- are bi-linear
LC’OM — Z(rc — XCOM) X Fc

C

F. € friction cones Inequality constraints
are easy to project

(indicator functions)

(XconMs Xcom, Loonm) € Box Constraints

ﬂ. ; [Meduri et al,, arxiv.org/abs/2201.07601,T-RO in press]



min 3 ¢r(Fe) + b(Xconts Xcont» Lcom) ADMM for centroidal dynamics
I?-"e XCoM L

%ot Lo |) solve force problem (positions are fixed)
=> simple QP
subject to 2) solve position problem (forces are fixed)
MXcon = Mg+ ZF‘,. =S simple QP
Loor = ) _(re — Xcom) X F. 3) Dual variables update

(linear analytic formula)

F.. € friction concs

=> iterate until convergence
(early termination for MPC)

(X(;(,J\.[, 5((_,'(,.-\1, LC'().'\[) & Box Constraints

FISTA for QP solver (Fast lterative Shrinkage Thresholding Algorithm)

- Nesterov accelerated gradient descent + projection operators for constraints

- First order method (only gradients) with second order convergence guarantees
- Easy to implement

‘f. 1 [Meduri et al,, arxiv.org/abs/2201.07601,T-RO in press]



Closed-loop nonlinear model predictive control

centroidal dynamics

optimization desired

(biconvex ADMM) contact forces

t velocities,  inverse  actuator
, accelerations dynamics = torques
kinematic optimization ﬂ + PD

joint positions,

(differential dynamic IKH~
programming)

20Hz

Sensor measurements

; - I [Meduri et al.,, arxiv.org/abs/2201.07601, 1-RO in press]













Solve times (whole-body) during gait transitions
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Do we need to close a faster MPC loop!
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Do we need to close a faster MPC loop!

® External Force Rejected
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Closed-loop nonlinear model predictive control

- Efficient solver for whole-body MPC
- Closed-loop MPC leads to very robust behaviors (easy to transfer to the robot)
- First-order methods are very exciting

Problems

- solve times are still high / requires a lot of online compute
- ho online contact / gait adaptation
- high barrier to entry => need to write your own solver



Learning to reduce optimizer complexity



Learning cost functions mapping sensors to OC problems

Sensors (Images/Motion Capture)
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Move all the complexity in the cost function
Cost function NN => adapted sensor-driven quadratic cost at each control cycle
At each MPC cycle => simple QP with constraints

4 | [Meduri et al.,https://arxiv.org/abs/2209.09451]



——

Only a QP solved at each control cycle yet can avoid obstacles
Cost includes vision + position/velocity sensing

B [Meduri et al,, https://arxiv.org/abs/2209.0945 1 ]



But is this the way to go...?



Jump forilighiBalls

lime to InterceptioSONESSES1 & E thaX:

[Hwangbo et al. 201 9] [Huang et al. 2022]

Direct policy learning with RL has had impressive successes

Perception is naturally included
low barrier to entry (simple algorithms)



Closed-loop nonlinear model predictive control

- Efficient solver for whole-body MPC

- Closed-loop MPC leads to very robust behaviors (easy to transfer to the robot)
- First-order methods are very exciting

- Learning costs / value function help lower complexity / include perception

Still many remaining issues:
- high barrier to entry for traj. opt./ MPC
- perception is often ignored
- where do we go from here! how do we relate to RL recent successes?

https://github.com/machines-in-motion
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