OPTIMIZATION-BASED MOTION GENERATION FOR COMPLETING BUZZWIRE TASKS WITH THE REEM-C HUMANOID ROBOT

Peter Q. Lee Vidyasagar Rajendran Katja Mombaur

Canada Excellence Research Chair in Human-Centred Robotics and Machine Intelligence

Systems Design Engineering & Mechanical & Mechatronics Engineering

Workshop on Advancements on TO and MPC HUMANOIDS 2022, Okinawa, Japan

Article

Lee, P.Q; Rajendran, V.; Mombaur, K.; "Optimization-Based Motion Generation for Buzzwire Tasks With the REEM-C Humanoid Robot". Frontiers in robotics and AI, 9, 898890.

https://doi.org/10.3389/frobt.2022.898890

Overview of buzzwire task

- Description:
 - 1. Hold a conductive loop end-effector
 - 2. Traverse obstacle other without collisions
 - 3. Minimize time to completion

Application to humanoid

- Dexterity/agility benchmark
- Extensions to high precision tasks

Contribution

- Buzzwire on humanoid Reem-C robot
 - Formulation of OCP to generate valid trajectories
 - Evaluate on trajectories over three example obstacles
 - Examine discrepancy from running on hardware

MATERIALS & SETUP

Humanoid

Obstacle construction & parameterization

Reem-C humanoid

- Humanoid robot with 30 actuated joints.
- Using left arm for buzzwire (7-dof)
- Position/Velocity controller

Obstacle

Three obstacles formed from copper wire/tubing

Obstacle-A

Obstacle-B

Obstacle-C

Obstacle wiring

- Circular end-effector (5 cm radius)
- When closed, collision indicated with LED illumination and piezoelectric buzzer

Representation of Obstacle

- Select discrete 3D to represent obstacle
- Fit cubic spline parameterized by normalized arclength (β)
 - Start: $\beta = 0$, End: $\beta = 1$

METHODS

Optimal Control Problem

- Variables
- Objective function
- Problem constraints
- Discretization

$$\min_{x} f(x)$$

$$g(x) \le 0$$

$$h(x) = 0$$

State variables

- q(t) Joint position
- $\beta(t)$ Obstacle target
- $\dot{q}(t)$ Joint velocity
- $\dot{\beta}(t)$ Obstacle target velocity

Control variables

- $\ddot{\beta}(t)$ Obstacle target acceleration
- $\ddot{q}(t)$ Joint acceleration

Free variables

• t_f – total time

State equations

$$\ddot{q} = \frac{\dot{q}}{dt}, \dot{q} = \frac{q}{dt}, \ddot{\beta} = \frac{\dot{\beta}}{dt}, \dot{\beta} = \frac{\beta}{dt}$$

Task space

- $\epsilon(\beta)$ Obstacle position
- $\epsilon'(\beta)$ Obstacle tangeant
- $\kappa(q)$ End effector position
- $\kappa'(q)$ End effector normal

Problem objective

Considerations:

Problem Constraints

• Three categories of constraints

1. Limits

$$q^{\min} < q(t) < q^{\max}$$
 $\dot{q}^{\min} < \dot{q}(t) < \dot{q}^{\max}$
 $\ddot{q}^{\min} < \ddot{q}(t) < \ddot{q}^{\max}$

2. Start/Termination

$$\dot{q}(0) = 0$$

$$\dot{q}(t_f) = 0$$

$$\beta(0) = 0$$

$$\beta(t_f) = 1$$

$$\dot{\beta}(t) \ge 0.0$$

Problem constraints

3. Collision

$$\delta = 10^{-4}$$

Coplanar constraint:
$$-\delta < \kappa'(q)^{\top}(\kappa(q) - \epsilon(\beta)) < \delta$$

 $\rho = 1 \text{ cm}$

Euclidean constraint:
$$||\kappa(q(t)) - \epsilon(\beta(t))||_2 < \rho$$

 $\mu = 0.55$ $\kappa'(\alpha(t))^{\top} \epsilon'(\beta(t)) > \mu$

Multiple shooting

- Transform continuous OCP into discrete non-linear program (NLP)
 - N=100 discrete shooting nodes
- Discrete states $\{q_1, \dots, q_N\}, \{\dot{q}_1, \dots, \dot{q}_N\}, \text{ etc.}$

Discretized Objective Function

$$t_f + \sum_{i=1}^{N} \left[\alpha ||\kappa(q_i) - \epsilon(\beta_i)||_2 - \nu \kappa'(q_i)^{\top} \epsilon'(\beta_i) \right]$$

Continuity Constraints

$$q_{i+1} = q_i + \dot{q}_i \Delta t + \frac{1}{2} \ddot{q}_i \Delta t^2$$

$$\dot{q}_{i+1} = \dot{q}_i + \ddot{q}_i \Delta t$$

$$\beta_{i+1} = \beta_i + \dot{\beta}_i \Delta t + \frac{1}{2} \ddot{\beta}_i \Delta t^2$$

$$\dot{\beta}_{i+1} = \dot{\beta}_i + \ddot{\beta}_i \Delta t$$
UNIVERSITY OF

Software

- Multiple shooting problem modelled in RBDL-CasAdi
 - RBDL replacing floating point ops with CasAdi symbolic ops
 - Allows auto-differentiation of $\kappa(q)$ and $\kappa'(q)$

- IPOPT solver
 - Converges solutions in 15 (A), 25 (B), 42 (C) seconds.

RESULTS

Impact of parameter tuning

Trajectory examples

Hardware analysis

Trajectory generation

Parameter trade-off

 α - Euclidean penalty ν - Orientation penality

• Time vs margin collision with three different parameter configurations

•
$$(\alpha = 0, \nu = 0)((\alpha = 30, \nu = 1), (\alpha = 150, \nu = 5)$$

Obstacle-A

Verifying contact circuit is live

Obstacle-B

Verifying contact circuit is live

Obstacle-C

Hardware summary

- All trajectories could run without collisions
 - Careful positioning of base required.
- Some deviation between nominal and recorded trajectories.

Legend

Hardware Nominal

FUTURE EXTENSIONS

Full body Motion

- Enable larger & more complex obstacles
- Exploit body momentum for faster trajectories

Source: https://www.flickr.com/photos/visualpunch/99555
22965/ by "visualpun.ch" CC BY-SA 2.0

Challenges

- More DOF
 - Harder to solve computationally
 - Template models?
- Stability constraints
 - End-effector stabilization

Solving trajectories online

- Traverse obstacles from arbitrary starting poses
- Generalize to unseen/unknown obstacles

Challenges

- Hard to visualize thin obstacles with current stereo/depth cameras
- Artificial visual tags (e.g., Aruco markers, AprilTags)
 - Error margin still very small (< 5cm)
 - Camera calibration and base estimation need to be very fine tuned

Conclusion

- Formulated objective function & constraints for buzzwire OCP
- Demonstrated & evaluated trajectories on REEM-C humanoid

Discussion Question:

Buzzwire as a standard benchmark for humanoid hardware / control?

Acknowledgements

 This work received funding from the National Sciences and Engineering Research Council of Canada, the University of Waterloo, and the Tri-Agency Canada Excellence Research Chair Program

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

APPENDIX

Spline collision checking (offline)

for each spline;

Solve for roots $k'(q)^T (a_3\beta^3 + a_2b^2 + a_1b + a_0) = k'(q)^T k(q)$

Check if roots occur in the valid domain of the spline

If there is exactly one valid root, then it's valid

Otherwise, it's invalid.

Obstacle viewing with Realsense

FACULTY OF

ENGINEERING