A Constrained Iterative LQR Solver for the Trajectory Optimization
Framework Horizon

Arturo Laurenzi, Francesco Ruscelli, and Nikos G. Tsagarakis.

Abstract—This work introduces the implementation of
the equality-constrained Ifterative Linear-Quadratic Regulator
(eILQOR) solver used inside the recently published trajectory
optimization (TO) framework for robotic application, Hori-
zon. Differently from most constrained ILQR implementations
that use an iterative penalty approach such as Augmented
Lagrangian, we directly apply Newton’s method to the KKT
equations of the TO problem at hand, and show how to compute
Newton steps with linear complexity w.r.t. the horizon length.
Our approach generates estimates of Lagrangian multipliers
corresponding to all constraints, allowing to use an exact
¢; merit function inside a line-search based globalization
strategy. We conclude our work with an extensive validation
campaign involving many complex robotic platforms, such as
our wheeled-legged quadruped robot CENTAURO.

I. INTRODUCTION AND RELATED WORKS

Trajectory optimization (TO) has recently attracted the
interest of the robotics community thanks to its ability to
generate complex, whole-body coordinated motions from
an intuitive, high-level task description specified in terms
of costs and constraints, also resulting in a plurality of
available software tools. In most applications, trajectory
optimization problems are natively written in continuous-
time; it is however preferableﬂ from a numerical point of
view to first perform a discretization step that yields an
ordinary non-linear program (NLP), such as the following:

N-1
Xo:Nryr'ltioI;qu kg(’) O (ks ux) +En () (1a)
st xpr1 = F (g, ug) (1b)
8kl) 20, gnlay) 20 (lc)
hi(xk,) =0, hy(xn) =0, (1d)

which can be handled via off-the-shelf NLP solvers. Such
algorithms are applicable to generic NLP problems, but are
likely to offer sub-optimal performance for any specific
problem at hand. Indeed, TO problems in the form (]I[),
exhibit a special structure that is due to the so-called Markov
property, i.e. (i) cost and constraints are separable w.r.t.
time, and (ii) the state vector at a next time k+ 1 can be
expressed as a sole function of the state and input at the
present time k. This key property is classically exploited by
the well-known Iterative Linear Quadratic Regulator (ILQR)
solver. Because of its parametric nature, extensions of ILQR
including constraints have proven to be more challenging

Authors are with the Humanoid and Human-Centred Mechatronics
(HHCM) Lab, Istituto Italiano di Tecnologia (IIT), Genova. Please send
correspondence to {name.surname}@iit.it

ISee [1, Sec. 4.3] for a discussion on this matter.

Fig. 1.

The Centauro [2] robot climbing off a 30 cm platform thanks to
the proposed eILQR solver. Visualization of optimized trajectory (left) and
real robot execution (right).

to devise. Approaches based on Augmented Lagrangian
have been proposed [3], [4], which however can suffer
from poor numerical conditioning due the possibly large
required values of their penalty parameter, which moreover
implies additional tunable knobs. Exact strategies for general
elLQR were proposed e.g. in [5], which however includes a
cubic complexity constraint handling routine. Recently, the
methods of [6], [7] proposed a solution to eLQR that enjoys
linear complexity w.r.t. N, limiting however to quadratic
costs and linear constraints, and neglecting the computation
of Lagrange multipliers.

This abstract introduces the implementation of an eILQR
algorithm for our recently introduced TO framework, Hori-
zon [8]. Our main contributions are the following:

o A derivation of eILQR that does not rely on Bellman’s
principle of optimality, and instead applies Newton’s
method to the first-order necessary condition of opti-
mality for ().

o Thanks to the proposed derivation, we compute values
of the Lagrange multipliers, and show that they prove
to be useful for globalization purposes, as well as to
incorporate second-order information.

o Finally, we validate our eILQR algorithm with many
TO instances involving quadruped and humanoid robots,
ranging from offline-computed dynamic maneuvers, to
online receding-horizon optimization.

II. PROPOSED METHOD

Since the TO is an ordinary equality-constrained NLP,
we can attempt to solve it by writing down the first-
order necessary condition for the optimality of a candidate
solution, i.e. the Karush-Kuhn-Tucker (KKT) conditions. To
this aim let A € R" and p; € R, for k € {0,...,N},
be the vectors of Lagrange multipliers corresponding to
the dynamics constraint and equality constraint (Td),
respectively. The Lagrangian function for problem (I is
therefore defined as

L(xo.n, to:N—1,Ao:N—1, o) =

N—1

Z (et i) + 1 (i i) + A4 (B,) = xi01)+ (2)
=0

+ Oy (xn) +,u,§ hn(xn)-

The KKT conditions for () read as follows:

%:VMHFCZM—M?MLA[M:O (3a)
g—fk =Vl +Df e+ B A =0 (3b)
é% = Fie(xg, u) —xp1 =0 (3c)
9% = hy (e, ux) =0, (3d)
for k € {0,...,N — 1}, whereas for k =N we have
I =Vl +Cly—Av-1 =0 (4a)
aaTI[k =hy(xy) =0. (4b)

In and @) V. € R" and V, {; € R™ are the gradients
of the intermediate costs w.r.t. state and input, respectively;
Ay € RPEX™ and By, € RPE*™ are the Jacobian matrices of the
dynamic constraint (Ib) w.r.t. state and input, respectively;
C, € RPeXM and Dy, € RPE*™ are the Jacobian matrices of the
equality constraint (Id) w.r.t. state and input, respectively;
note that the dependency of all quantities upon the generic
KKT candidate (x;,u;) had been omitted for the sake of
brevity.

A. Linearized KKT conditions

In general (3) and (@) represent a system of non-linear
equations, whose (possibly not unique) solution is a KKT
point, i.e. a candidate to be a local minimizer of (I)). Starting
from an initial guess in terms of both state, input trajectories
and Lagrange multipliers, we can apply Newton’s method to
iteratively compute increments of such quantities, i.e. dxg,
5uk, 52,](, and 5[.Lk

B. Newton step computation: backward pass

The linearized KKT block at the generic node k cannot be
directly solved due to the dynamics-induced coupling with
the previous and next nodes. On the other hand, solving
the overall KKT system obtained by stacking them over he
horizon length would violate the linear complexity require-
ment w.r.t. the horizon length N. We therefore take a Riccati
approach, and use the linearized dynamics to propagate both

2) is also known as the co-state vector.

cost and constraints backward in time, starting from the final
node, and solving at each step for one single control input
increment Su;. We shall hypothesize that a relation of the
form (3) holds for any k+1 € {0,...,N}, i.e.

Skt 8x1 + Vil SVis — 8A = =i (52)

Vi1 OXk41 = — Vg1, (5b)

for some appropriate choice of a symmetric positive-definite
matrix Sg; € R Vi € R+ g1 € R, and vy €
R+1; as it will become more clear towards the end of this
section, (Bb) accumulates all constraints that have not been
satisfied by future control inputs du;, for i > k, together
with their corresponding multipliers vy, 1. Even after back-
propagating such a relation via the dynamics, the resulting
expression cannot be solved directly, as the resulting input-
constraint matrix Dy is in general rank-deficient. Intuitively
this reflects the fact that, for any given state increment Sx, a
constraint at time k can not be fulfilled by the sole selection
of an appropriate control duy: proper conditions must be
satisfied by previous controls du; for i < k, too.

C. Constraint back-propagation

To compute Ouy, we (i) identify the part of the constraint
that is feasible at time k, and (ii) define the remaining part
to be the unsatisfied constraint at time k in (5b). This is
accomplished via a QR decomposition of said constraint
matrix. It is also necessary to remove Lagrangian multipliers
corresponding to the infeasible constraint component, again
exploiting the QR decomposition The reduced KKT system
can finally be solved for both the control input increment, and
the Lagrange multiplier increment of the feasible constraint
component. As expected, the result is expressed in terms of
a linear policy w.r.t. the unknown state increment, that we
can compactly write as

Suyp =I5+ LK 5x; (62)
O = ln,k +Lnk Oxy, (6b)
for
luk Lu k] -1 |:huk Hux k:|
’ ==K ’ . 7
Ln,k Ly o lwe Wi ™

D. Newton step computation: initial state optimization

Although most of the existing literature focuses on the
case where the initial state xq is fixed, the ILQR algorithm
poses no such restriction. Indeed, optimizing over the initial
state finds applications in the field of offline trajectory
optimization, where the initial system state is an actual
design variable; notice also how in the context of equality-
constrained ILQR, a fixed initial state is obtained with the
simple linear constraint xy = Xo.

Extending ILQR to initial state optimization is done by
considering (3) evaluated at the initial node. Solving for
the initial state increment dxy and constraint multiplier v
completes the backward pass, and allows to initialize the
forward recursion, as explained in the next subsection.

E. Newton step computation: forward pass

The Newton step computation process is completed by
providing recursive expressions for the state, dynamics mul-
tiplier, and constraint increments, starting from the known
quantities dxo and 8Vvy.

F. Globalization

While the full Newton step 06X = (8xo.n,Oug.n—1) en-
joys local quadratic convergence close to a solution, it can
perform poorly when the linear model of the KKT system
is not accurate enough. Convergence to a local minimum
can be promoted by enforcing the decrease of a suitable
merit function via e.g. of the line-search procedure described
in [9, Ch. 3], which scales down the computed step 6X
by a factor o until sufficient improvement is achieved. As
discussed in [9], a merit function for a constrained problem
should balance two conflicting objectives, i.e. feasibility on
the one hand, and optimality on the other hand; furthermore,
it is desirable for the chosen merit function to be exact, i.e.
to possess a minimum point at any local solution of (I). One
such function [9, Ch. 15.4] is the following exact ¢; merit m:

m(X) =J(X)+v[IC)]h, ()

where J and C are the total cost and constraint vector for (]I[),
provided that the coefficient ¥ > 0 exceeds the maximum
Lagrange multiplier at the solution, i.e.

> max{{|Agy i [les, [|Ho:wlleo}- ©)

As too large values of y are known to cause numerical issues,
we conveniently exploit the computed multiplier estimates to
compute a reasonable weight value.

III. IMPLEMENTATION AND VALIDATION

The proposed eILQR algorithm is implemented in C+,
using Eigen3 for dense linear algebra, and made available
via Python bindings to the recently published Horizon frame-
work [8]. Within Horizon, we rely on CasADi [10] to act
as a modeling language, as well as to compute all required
derivatives with support to code generation, too. Multibody
kinematics and dynamics are computed by the Pinocchio [11]
library, including collision computations via HPP-FCLE

As our use case is robotics-driven, we validate eILQR on
a vast collection of robotic examples, where it is employed
as an offline TO solver as well as in an online, receding-
horizon fashion according to a real-time iteration (RTI)
scheme. The adopted dynamic model is a kino-dynamic
one, similar to [12], [13], where the state is composed of
the robot configuration g and its velocity v, whereas the
accelerations v and contact forces F are taken as inputs; the
resulting continuous-time dynamics is then integrated with a
4™ _order Runge-Kutta scheme.

In all TO problems equality constraints play a dominant
role, as they are adopted (i) to enforce the robot’s centroidal
dynamics (i.e., physical consistency between state and input),

3The HPP-FCL library is available at https://github.com/
humanoid-path-planner/hpp-fcl

Fig. 2. Optimized trajectory requiring our humanoid robot COMAN+ to
perform a dynamic 1.0m forward jump.

Constraint violation
—e— [0] BW Full Model
] [1] CW Climb Off
—e— [2] MB Fixed g
—e— [3] MB Variable qo

10 —e— [4] J3 Spot
—e— [5] J3 Spot Flip
10° [6] J3 Biped
—e— [7] DM Jump Forward
8 [8] DM Jump On Wall

—e— [9] DM Jump Twist
—e— [10] DM Leap

0 10 20 30 40 50
Iteration [-]
Fig. 3. History of constraint violations as the eILQR solver converges to

a solution. The solver termination condition is set to &y = 107°.

(ii) to model stance phase by imposing zero contact velocity,
(iii) to impose a given clearance trajectory to swing feet,
and (iv) to constrain (a sub-set of) the final configuration
to a desired goal state, which is the main driver behind all
the optimized motions. Costs are only used to regularize the
solution, whereas unilateral contact forces, friction cones,
and joint limits are modeled with soft barriers.

A. Discussion

As seen e.g. in Figure 3] eILQR can solve all problems
within a modest number of iterations despite being seeded
with a naive, constant initial guess. As shown in Figure [4]
elLQR iterations often increase the cost value, highlighting
the conflict between optimality and feasibility. The proposed
merit function and regularization strategy (Figure [3) play

Cost » Dynamics defect norm
10
10 1073
10° Remmemmmns: 107
-7
T e — 10
; i 10°
10" acsesesssen
10-11
107" '
f-\— 0"
0 20 40 0 20 40

Iteration [-] Iteration [-]

Fig. 4. Histories of cost values and dynamics defects as the eILQR
solver converges to a solution.

https://github.com/humanoid-path-planner/hpp-fcl
https://github.com/humanoid-path-planner/hpp-fcl

Step size Regularization
100 109
10°
10°
10" ,
10
107°
107° DU
0 10 20 30 40 50 0 10 20 30 40 50
Iteration [-] Iteration [-]
Fig. 5. Adaptive step size & and regularization &g histories.
800
B Backward pass
W Handle constraints
600
z
=
2 400
E
) I I
0 I — l l l
0 1 2 3 4 5 6 7 8 9 10

Experiment ID

Fig. 6. Histogram of required CPU time to solve a single backward pass
iteration (i.e., for a single node), as well as to perform the constraint back-
propagation routine. Experiment IDs correspond to the legend of Figure El

therefore a crucial role in monitoring progress and result in
a globally convergent algorithm. Finally, the computational
impact of the constraint propagation routine of Section [[I-C]
on the backward pass is rather moderate, as seen in Figure[6]

IV. CONCLUSIONS

This abstract has introduced the implementation of the
equality-constrained ILQR (eILQR) solver used inside the
recently published Horizon framework [8] for trajectory
optimization (TO). Future work will address the inclusion of
inequality constraints, potentially exploiting active-set meth-
ods, which heavily rely on the provided Lagrange multiplier
estimates.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and in-
novation programme under grant agreements No. 101016007
(CONCERT) and No. 871237 (SOPHIA).

REFERENCES

[11 J. T. Betts, Practical Methods for Optimal Control and Estimation
Using Nonlinear Programming, Second Edition. Society for Industrial
and Applied Mathematics, second ed., 2010.

[2] N. Kashiri, L. Baccelliere, L. Muratore, A. Laurenzi, Z. Ren, E. M.
Hoffman, M. Kamedula, G. F. Rigano, J. Malzahn, S. Cordasco, et al.,
“Centauro: A hybrid locomotion and high power resilient manipulation
platform,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp- 1595-1602, 2019.

[3] S.E. Kazdadi, J. Carpentier, and J. Ponce, “Equality constrained differ-
ential dynamic programming,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), pp. 8053-8059, 2021.

[4]

[5]

[6]

[7]

[8]

[91
[10]

[11]

[12]

[13]

T. A. Howell, B. E. Jackson, and Z. Manchester, “ALTRO: A Fast
Solver for Constrained Trajectory Optimization,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 7674-7679, 2019.

A. Sideris and L. A. Rodriguez, “A riccati approach to equality
constrained linear quadratic optimal control,” in Proceedings of the
2010 American Control Conference, pp. 5167-5172, 2010.

F. Laine and C. Tomlin, “Efficient Computation of Feedback Control
for Equality-Constrained LQR,” in 2019 International Conference on
Robotics and Automation (ICRA), pp. 67486754, 2019.

S. Yang, G. Chen, Y. Zhang, F. Dellaert, and H. Choset, “Equality
constrained linear optimal control with factor graphs,” 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 9717-
9723, 2021.

F. Ruscelli, A. Laurenzi, N. G. Tsagarakis, and E. Mingo Hoffman,
“Horizon: A trajectory optimization framework for robotic systems,”
Frontiers in Robotics and Al, vol. 9, 2022.

J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY,
USA: Springer, 2e ed., 2006.

J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi — A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1-36, 2019.

J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
0. Stasse, and N. Mansard, “The pinocchio c++ library — a fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in IEEE International Symposium on System
Integrations (SII), 2019.

J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A unified
mpc framework for whole-body dynamic locomotion and manipula-
tion,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4688—
4695, 2021.

H. Ferrolho, V. Ivan, W. Merkt, I. Havoutis, and S. Vijayakumar,
“Inverse dynamics vs. forward dynamics in direct transcription for-
mulations for trajectory optimization,” in 2021 [EEE International
Conference on Robotics and Automation (ICRA), pp. 12752-12758,
2021.

	Introduction and related works
	Proposed method
	Linearized KKT conditions
	Newton step computation: backward pass
	Constraint back-propagation
	Newton step computation: initial state optimization
	Newton step computation: forward pass
	Globalization

	Implementation and validation
	Discussion

	Conclusions
	References

